College of Arts and Sciences Department of Mathematics | Mathematics and Actuarial Science Programs Table 3: Student Learning Outcomes

Doctorate in Mathematics

Outcome Type	Outcome	Assessment & Evaluation Process
Program Outcome: Production of Graduates	By the end of the year, the program will produce an average of 7 or more Mathematics PhD graduates per 12- month period (Summer, Fall, Spring semesters).	Counting the number of Mathematics PhD graduates per 12-month period.
Learning Outcome: Research Communication	As they develop mathematical maturity, students will develop their communications ability about mathematics, and will find value for their own research from the informal contacts as well as the talks at regional, national or international disciplinary research sessions and conferences. In their later graduate school months, students will be able to prepare and deliver professional-level posters or talks on their research in mathematics.	Our goal is to have 60% of the mathematics PhD graduates report conference participation in their research area
Learning Outcome: Research Competence	Upon completion of the course of instruction, the student will be able to produce productive, publishable original research in mathematics and its applications.	Research competence is measured by the writing and defense of a mathematics PhD dissertation, as decided by the student's faculty PhD committee.

Source: FSU Institutional Effectiveness Portal, 2018-19.

Masters in Mathematics

Outcome Type	Outcome	Assessment & Evaluation Process
Program Outcome: Production of Graduates	By the end of the year, the program will produce an average of 40 or more Mathematics MS graduates per 12- month period (Fall, Spring, Summer semesters).	Counting the number of Mathematics MS graduates per 12-month period.
Learning Outcome: Depth of Knowledge	Upon completion of the course of instruction, the student will be able to demonstrate in-depth knowledge of an advanced mathematical topic, if the student is in an academic degree program. These topics include, but are not limited to, abstract algebra, applied analysis and differential equations, mathematical modeling, numerical analysis, real and complex analysis, and topology.	Our goal is 90% of the students scoring 83% or better in a portfolio of assessments from one of the following six topic sequences: abstract algebra, applied analysis and differential equations, mathematical modeling, numerical analysis, real and complex analysis, and topology.

Learning	Upon completion of the course of instruction, the	This will result in 80% of the students in Financial mathematics degree program (1) scoring 83% or
Outcome:	student will be able to demonstrate broad	better in each of four approved graduate courses from at least three outside departments and also (2)
Knowledge for	graduate level knowledge and skills from relevant	showing very good mastery in at least one outside department by scoring 88% or better in a regular
Applications in	outside fields and topic mastery; e.g., computer	graduate course in that department, evaluated competitively with graduate students from that outside
Related Fields	science and statistics for both programs, with	department. The standard for Biomathematics is three approved graduate courses from at least two
	economics, finance and risk management for	outside department and grades of S in S/U Biology courses are also included in (1).
	Financial Mathematics, and with biochemistry,	
	chemistry, biological science and physics for	
	Biomathematics, if the student is in a professional	
	degree program.	
Learning	Upon completion of the course of instruction, the	Our goal is 90% of the students scoring 83% or better in a portfolio of assessments from three or more
Outcome:	student will be able to demonstrate knowledge of a	of the following six topic sequences: abstract algebra, applied analysis and differential equations,
Breadth of	range of advanced mathematical topics, if the	mathematical modeling, numerical analysis, real and complex analysis, and topology.
Knowledge	student is in an academic degree program. These	
	topics include, but are not limited to, abstract	
	algebra, applied analysis and differential equations,	
	mathematical modeling, numerical analysis, real	
	and complex analysis, and topology.	
Learning	Upon completion of the course of instruction, the	This will result in 90% of the students in a professional degree program being evaluated as "good" (83%
Outcome:	student will be able to select and research a topic	or better) by the capstone projects course instructor(s), taking into account both the talk and resulting
Communicating	and prepare professional-level presentations: (a)	student discussions, as well as the written paper.
Research through	50-minute talks employing appropriate technology	
Speaking &	(e.g., Power Point) and critiqued by the other	
Writing	program students; (b) properly documented	
	exposition of the results in written form following	
	an accepted manual of style, as a capstone activity	
	of the course of instruction if the student is in a	
	professional degree program.	

Source: FSU Institutional Effectiveness Portal, 2018-19.

Bachelors in Mathematics

Outcome Type	Outcome	Assessment & Evaluation Process
Program Outcome: Production of Graduates	By the end of the year, the program will produce 20 or more Mathematics BS graduates for the 12- month period (Summer, Fall, Spring semesters).	Counting the number of Mathematics BS graduates per 12-month period
Learning Outcome: Line Integral	Upon completion of the course of instruction, the student will be able to compute a line integral.	Our goal is 80% of the students scoring 73% or better for a question on the last test or final examination of MAC 2313 that is designed to test whether the student can evaluate a line integral.

Learning	Upon completion of the course of instruction, the	Our goal is 80% of the students scoring 73% or better for a question on the last test or final
Outcome:	student will be able to compute the eigenvalues	examination of MAS 3105 that is designed to test whether the student knows how to find the
Eigenvalues and	and eigenvectors of a square matrix.	eigenvalues and eigenvectors of a square matrix.
Eigenvectors		
Learning	Upon completion of the course of instruction, the	Our goal is 70% of the students scoring 78% or better in either MAP 4103 AND MAD 3703/4704 (the
Outcome:	student will be able to demonstrate a sufficiently	capstone courses for majors in Applied Mathematics) or MAP 4481 AND MAP 2480 (the
Analytical Skill	high level of analytical skill to construct and critique	capstone courses for majors in Biomedical Mathematics) or MAS 4302/3 AND MAA 4224/6/7 (the
	either a valid mathematical model or a valid proof	capstone courses for majors in Mathematics) or MTG 4212 AND MAS 4203/4302/3 (the capstone
	of a mathematical theorem (whichever is	courses for FSU Teach Mathematics) as determined by instructor- constructed exams, homework
	appropriate to the student's chosen option).	assignments and course projects
Learning	Upon completion of the course of instruction, the	Our goal is 80% of the students scoring 73% or better for a question on the last test or final
Outcome:	student will be able to demonstrate how to	examination of MAC 2313 that is designed to test whether the student can evaluate a double integral
Multiple	evaluate a double integral by interchanging the	by interchanging the order of integration.
Integration	order of integration.	
Learning	Upon completion of the course of instruction, the	Our goal is 70% of the students scoring 78% or better in a portfolio of assessments within at least one
Outcome:	student will be able to demonstrate in-depth	senior-level course in at least three of the following seven subfields of mathematics: abstract algebra,
Breadth of	knowledge of a broad range of mathematical topics.	real and complex analysis, game theory and optimization, mathematical modeling, numerical analysis,
Knowledge		partial differential equations, or topology, as determined by instructor- constructed exams, homework
		assignments and course projects.
Learning	Upon completion of the course of instruction, the	Our goal is 80% of the students scoring 80% or better in any of the following courses: MAD 3703, ISC
Outcome:	student will be able to demonstrate proficiency in	3313 or COP3014.
Proficiency in a	C, C++, FORTRAN, Java or another approved higher-	
Scientific	level programming language.	
Programming		
Language		
Learning	Upon completion of the course of instruction, the	Our goal is 80% of the students scoring 73% or better for a question on the last test or final
Outcome: Laplace	student will be able to use the Laplace transform to	examination of MAP 2302 that is designed to test whether the student knows how to use the Laplace
Transformation	solve a linear ordinary differential equation.	transform to solve a linear ordinary differential equation.

Source: FSU Institutional Effectiveness Portal, 2018-19.

Bachelors in Actuarial Science

Outcome Type	Outcome	Assessment & Evaluation Process
Program	By the end of the year, the program will increase	First, comparing the number of graduates per 12-month period over the past 3 years; and second,
Outcome:	the number of graduates in the Actuarial Science	estimating retention of these cohorts based on the number in the first specialized course in the window
Increase in	program to 15 per 12-month period both by (1)	for which graduation would be timely.
Graduation	recruiting more students and (2) retention to	
Numbers through	graduation of a larger percentage of those who	
Recruiting	reach the upper sophomore-junior level.	

Learning	Upon completion of the course of instruction, the	This will result in 90% of the students scoring 70% or better as determined by class performance or
Outcome:	student will be able to cite broad range knowledge	presentation (Assessed) in at least 8 courses of study representing finance, economics, risk
Knowledge Basis	of the topics from each of Economics, Statistics,	management and statistics where 5 or more of these are at the four thousand level.
or Essential	and Finance as well as general knowledge in	
Collateral Areas	computer science, risk management and insurance, and accounting.	
earning	Upon completion of the course of instruction, the	Our goal is 80% of the students scoring 73% or better for a question on the last test or final
Dutcome: Line	student will be able to compute a line integral.	examination of MAC 2313 that is designed to test whether the student can evaluate a line integral.
ntegral		
earning	Upon completion of the course of instruction, the	Our goal is 80% of the students scoring 73% or better for a question on the last test or final
Outcome:	student will be able to compute the eigenvalues	examination of MAS 3105 that is designed to test whether the student knows how to find the
Eigenvalues and Eigenvectors	and eigenvectors of a square matrix.	eigenvalues and eigenvectors of a square matrix.
earning	Upon completion of the course of instruction, the	Our goal is 80% of the students scoring 73% or better for a question on the last test or final
Outcome:	student will be able to demonstrate how to	examination of MAC 2313 that is designed to test whether the student can evaluate a double integral
Multiple	evaluate a double integral by interchanging the	by interchanging the order of integration.
ntegration	order of integration.	
earning	Upon completion of the course of instruction, the	Our goal is 80% of the students scoring 80% or better in any of the following courses: MAD 3703, ISC
Dutcome:	student will be able to demonstrate proficiency in C,	3313 or COP3014.
Proficiency in a	C++, FORTRAN, Java or another approved higher-	
Scientific	level programming language.	
Programming		
Language		
earning	Upon completion of the course of instruction, the	This will result in 80% of the graduating students scoring 75% or better as determined by the tests,
Outcome:	student will be able to determine relationships	problem presentations and practice on the credentialing content of the capstone course required of all
Specialized Life	based on models for survival/failure and contingent	students in the program and specific content from Year 2005 Exam M (SOA) or 2005 Exam 3 (CAS).
Contingency	payments for single and multiple life functions and	
	competing risks.	
earning	Upon completion of the course of instruction, the	Upon completion of the course of instruction, the student will be able to recall knowledge basic to eacl
Dutcome:	student will be able to recall knowledge basic to	of the outside areas (Economics, Statistics and Finance) required for credentialing by SOA/CAS, with
Satisfaction of	each of the outside areas (Economics, Statistics and	VEE (Verification for Educational Experience)-approved courses completed in two of these collateral
OA/CAS	Finance) required for credentialing by SOA/CAS,	areas by all students, and with mastery at the high (beginning 5/2005) SOA/CAS-specified level
Credentialing	with VEE (Verification for Educational Experience)-	demonstrated in one of them.
	approved courses completed in two of these	
	collateral areas by all students, and with mastery at	
	the high (beginning 5/2005) SOA/CAS-specified level	
	demonstrated in one of them.	

Source: FSU Institutional Effectiveness Portal, 2018-19.